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Extraterrestrial hexamethylenetetramine
in meteorites—a precursor of prebiotic
chemistry in the inner solar system
Yasuhiro Oba 1✉, Yoshinori Takano 2, Hiroshi Naraoka 3,4, Yoshihiro Furukawa 5, Daniel P. Glavin 6,
Jason P. Dworkin 6 & Shogo Tachibana7,8

Despite extensive studies on the formation of organic molecules in various extraterrestrial

environments, it still remains under debate when, where, and how such molecules were

abiotically formed. A key molecule to solve the problem, hexamethylenetetramine (HMT) has

not been confirmed in extraterrestrial materials despite extensive laboratory experimental

evidence that it can be produced in interstellar or cometary environments. Here we report the

first detection of HMT and functionalized HMT species in the carbonaceous chondrites

Murchison, Murray, and Tagish Lake. While the part-per-billion level concentration of HMT in

Murchison and Tagish Lake is comparable to other related soluble organic molecules like

amino acids, these compounds may have eluded detection in previous studies due to the loss

of HMT during the extraction processes. HMT, which can yield important molecules for

prebiotic chemistry such as formaldehyde and ammonia upon degradation, is a likely pre-

cursor of meteoritic organic compounds of astrochemical and astrophysical interest.
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Presence of organic molecules in extraterrestrial environ-
ments has been widely accepted thanks to recent successes
in the in situ detection of cometary molecules toward 67P/

Churyumov-Gerasimenko1, as well as long-standing astronomical
observations2,3 and analyses of carbonaceous meteorites in
laboratories4–8. However, despite extensive studies on the for-
mation of organic molecules in various extraterrestrial environ-
ments such as molecular clouds9,10, protosolar nebula11,12, and
asteroids13–15, it still remains under debate when, where, and how
such extraterrestrial molecules were abiotically formed.

A key molecule to solve the problems is hexamethylenete-
tramine (HMT; C6H12N4; monoisotopic mass of 140.1062 Da),
which is a polyheterocyclic organic molecule (Fig. 1, Supple-
mentary Fig. 1). Based on laboratory experiments simulating
photochemical and thermal reactions of interstellar and cometary
ice analogues (at ~10 K) initially made of observed molecules,
such as water (H2O), ammonia (NH3), and methanol (CH3OH),
HMT is in general a significant product (up to 60% by weight) in
the total organic products16–20. Although the composition of
products varies depending on the experimental conditions, HMT
is generally abundant especially when methanol is used as an
initial reactant16,18,20. Since methanol is abundant in interstellar
ices3, the HMT formation is likely to take place in the interstellar
medium (ISM) and become incorporated into solar system ices
similar to other interstellar molecules21,22.

Yet HMT has not been observed toward any extraterrestrial
environments. Owing to its symmetric tetrahedral structure,
HMT does not possess a permanent dipole moment, which
precludes its remote observational detection by rotational spec-
troscopy. Though HMT is an infrared active molecule, its

detection in the presence of deep N–H, C–H, and C–N bands in
ices, as well as the presence of a strong silicate band at 10 μm,
would complicate its definitive identification, so it is also not
surprising that it has not yet been observed in interstellar or
planetary ices23. However, HMT has been postulated to be one of
the extended sources of NH3 and HCN in comets24. Besides the
lack of astronomical detection, there has also been no report on
the detection of HMT in any extraterrestrial materials including
carbonaceous meteorites, interstellar dust particles, and cometary
return samples.

Since HMT is susceptible to degradation by 100 °C water15 and
acid hydrolysis methods19 traditionally used in meteoritic soluble
organic analyses4; a different method to extract HMT from
meteorites was developed. In the present study, we extracted
relatively large portions (masses ranging from 0.5 to 2 g) of
interior samples of three carbonaceous chondrites, Murchison,
Murray, and Tagish Lake, under mild conditions which utilized
neither concentrated acidic solutions nor high temperatures for
the extraction processes. The aqueous extracts were purified using
cation-exchange chromatography and were then analysed using a
high-resolution mass spectrometer (HRMS) coupled with a high-
performance liquid chromatograph (HPLC)19,25. HMT was suc-
cessfully detected from Murchison, Tagish Lake, and Murray
meteorite extracts at parts-per-billion levels.

Results
Detection and quantification of HMT in carbonaceous
meteorites. Figure 2 shows mass chromatograms of the Murch-
ison, Murray, and Tagish Lake meteorites at the mass-to-charge

NN

N

N

OH

NN

N

N

CH3

NN

N

N NN

N

N

NH2

NN

N

N

CH2OH

NN

N

N

OCH3

NN

N

N

CH3HO

NN

N

N

CH3

HO

NN

N

N

CH3

OH

HMT (C6H12N4)
Exact mass: 140.1062

Methyl HMT (C7H14N4)
Exact mass: 154.1218

Amino HMT (C6H13N5)
Exact mass: 155.1171
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Fig. 1 Target molecules in the present study. Molecular structure and exact mass information of hexamethylenetetramine (HMT) and some
representative derivatives showing methyl-HMT, amino-HMT, hydroxyl-HMT, hydroxymethyl-HMT, methoxy-HMT, and monohydroxy-monomethyl-HMT
discussed in this study. Note that monohydroxy-monomethyl-HMT possesses three structural isomers depending on the positions of the two functional
groups.
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ratio (m/z) of 141.1135 ± 0.0004, which corresponds to the pro-
tonated ion of HMT (i.e., [M+H]+ as [C6H12N4+H]+) formed
by electrospray ionization (ESI), analysed by a HPLC equipped
with an InertSustain PFP analytical column. One sharp peak was
observed for each chromatogram at ~20.5 min, which was con-
sistent with HMT standard reagent (Fig. 2a) and far above the
blank detection level (Supplementary Fig. 2). The similar con-
sistency was also observed when the sample was analysed under
different analytical conditions where Hypercarb or InertSustain
Amide was used as a separation column for HPLC analysis (see
the “Methods” section and Supplementary Table 1). Based on the
retention time and mass accuracy (within 3 ppm of the theoretical
m/z), even under the different analytical conditions, the observed
peak can be confidently assigned to HMT. The observed con-
sistency in the fragmentation pattern of HMT by MS/MS
experiments (see the “Methods” section) between the Murchison
extract and the standard reagent further supports the above
conclusion (Fig. 3). The concentrations of HMT in the three
meteorites were 846 ± 37, 29 ± 9, and 671 ± 9 ppb (parts per bil-
lion; ng/g meteorite) for Murchison, Murray, and Tagish Lake,
respectively (Table 1). Mass peaks attributable to the deuterium
(D)-, 13C-, and 15N-substituted isotopologues of HMT were also
identified in the mass spectra of the Murchison extract (Supple-
mentary Fig. 3). We have confirmed that the loss of HMT is
negligible (see the “Methods” section) and that there is no
hydrogen isotopic fractionation of HMT during our analytical
procedure (Supplementary Fig. 4).

Tentative detection of HMT-derivatives. We also observed
several peaks with the m/z values well consistent with the HMT
derivatives methyl-HMT (HMT-CH3), amino-HMT (HMT-
NH2), hydroxy-HMT (HMT-OH), and hydroxymethyl-HMT
(HMT-CH2OH), (Fig. 1) in the mass chromatograms at the

m/z of 155.1291, 156.1244, 157.1084, and 171.1240, respectively,
as each protonated ion formula in Murchison (Fig. 4). The m/z=
171.1240 trace (Fig. 4e) shows at least three peaks, which might
be derived from HMT-CH2OH and its structural isomers
methoxy-HMT (HMT-OCH3) and monohydroxy-monomethyl-
HMT (HMT-OH(-CH3)) (Fig. 1). No authentic standards were
available, so these assignments are the most likely but other
isomers (e.g., ethyl-pentamethylene tetramine instead of HMT-
CH3) cannot be excluded. The absence of these species on the
mass chromatograms for the HMT standard reagent (Supple-
mentary Fig. 5) indicates that these are likely not formed during
workup or clusters or N-functionalizations formed by ESI and so
should be indigenous to the meteorite samples. Without authentic
standards, an estimate of their possible abundances assumed the
same ionization efficiency as HMT; the most abundant derivative
was HMT-CH3 (2% of HMT), followed by HMT-CH2OH or its
isomers (<0.6%), HMT-OH (0.2%), and HMT-NH2 (0.03%)
(Table 1).

Discussion
The negligible amounts of HMT in the blank and control samples
(see the “Methods” section) compared to the elevated con-
centrations of HMT measured in the meteorite extracts argue that
HMT is indigenous to the meteorites. In addition, the likely
detection of several HMT-derivatives also bolsters this conclu-
sion; unlike HMT itself, to our best knowledge, these HMT-
derivatives are commercially unavailable and their presence in
terrestrial environments has not been reported. However, these
HMT-derivatives have been identified in organic residues pro-
duced by photolysis of interstellar ice analogues followed by
warming to room temperatures, which mimics the processes of
molecular evolution toward star formation17,19. Furthermore, the
estimated relative abundances of these HMT-derivatives in
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Fig. 2 Identification of hexamethylenetetramine in meteorites. Mass chromatograms at the m/z of 141.1135 within a 3 ppm exact mass window at each
monoisotopic mass for a hexamethylenetetramine (HMT) standard reagent, b HMT in Murchison, c Tagish Lake, and d Murray meteorites, measured
using the InertSustain PFP column. The numbers in parenthesis represent the absolute scale in ion intensities for each chromatogram. The numbers near
the peak represent the retention time. We note here that a retention time difference between the standard reagent and the target molecule sometimes
occurs in a chromatographic separation for complex organic matter27,47. To compensate this issue, we always monitored the measured mass within 3-ppm
window for the data quality assurance. Also, small levels of fluctuation in the retention time are caused by variations in daily conditions of the liquid
chromatograph. The Tagish Lake and Murray extracts were analysed in a different day (the retention time for the HMT standard reagent was 21.07 min)
with the Murchison extract.
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the organic residues (orders of magnitudes less abundant than
HMT)17,19 are in reasonable agreement with those of the
meteoritic HMT-derivatives (Supplementary Fig. 6).

The concentration of HMT in Murchison (846 ± 37 ppb) is
within the range of individual water-extractable and acid-
produced amino acids (200–5000 ppb)26 and higher than that
of sugars (<180 ppb) and nucleobases (<~70 ppb) in the
Murchison meteorite5,6. In the Tagish Lake meteorite, the con-
centration of HMT (671 ± 9 ppb) is also in the range of individual
amino acid concentrations identified in acid hydrolysed water
extracts of the Tagish Lake meteorite (<14 ppb: Tagish Lake 11i,
<1000 ppb: Tagish Lake 11 h)7. While in Murray, the

concentration of HMT (29 ± 9 ppb) is lower than individual
amino acid concentrations (51–2834 ppb) in the same meteorite8.
It is possible that differences in the Murchison/Tagish Lake and
Murray parent body conditions (e.g. temperature, water/rock
ratio, etc.) led to lower abundances or higher loss rates of HMT,
which may partly be related to the formation of soluble organics.
For example, Supplementary Fig. 7 shows plots of the HMT
concentrations normalized with glycine concentrations in the
same meteorite. There seems no obvious trend in the con-
centrations of HMT with glycine, suggesting no obvious corre-
lation in terms of their formation history in each meteorite.
Supplementary Figs. 8–10 show mass chromatograms of each
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Fig. 3 Results of MS/MS experiments. Mass fragmentation patterns of hexamethylenetetramine (HMT) in a the standard reagent and b the Murchison
extract measured by MS/MS experiments (see the “Methods” section). A schematic image of HMT fragmentation is shown alongside the panel a. The 6–7
digit numbers in the mass spectra indicate the exact masses of the parent molecule (C6H13N4: the protonated ion of HMT) and its fragments). The
fragmentation patterns are consistent with each other except the presence of peaks with a red asterisk in the Murchison extract, which are derived from
other species coexisting with HMT. Note: the mass peak at the m/z of 68.9352 in the Murchison extract could not be successfully assigned to any ions
under the assumption that the ion is composed of C, H, N, and O. The mass peak assigned to C7H11 (m/z= 95.0856) is a background signal on the LC
condition.

Table 1 Summary of HMT and possible HMT-derivative concentrations and relative abundances.

Meteorite Sample mass
extracted (g)

Compound Formula Theoretical Mass
M+H+ (Da)

Measured Mass
M+H+ (m/z)

Concentration
(ppb)a

Relative
abundance (%)b

Murchison 2 HMT C6H12N4 141.1135 141.1133 846 ± 37 100
HMT-CH3 C7H14N4 155.1291 155.1290 13 ± 0.4 2
HMT-NH2 C6H13N5 156.1234 156.1235 0.3 ± 0.1 0.03
HMT-OH C6H12N4O 157.1084 157.1081 2 ± 0.3 0.2
HMT-CH2OH
and its isomersc

C7H14N4O 171.1240 171.1237 <4 ± 0.6 <0.6

Tagish Lake 0.5 HMT C6H12N4 141.1135 141.1134 671 ± 9 79
Murray 2 HMT C6H12N4 141.1135 141.1135 29 ± 9 3

aThe values represent the average of two measurements with the statistical error.
bRelative to HMT in Murchison.
cPeaks could not be distinguished between isomers shown in Fig. 1; their upper limit was estimated from the largest peak on the chromatogram.
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meteorite extract at the m/z values corresponding to imidazole
(C3H4N2; monoisotopic mass of 68.0374 Da) and its alkyl-
substituted homologues (up to seven carbon chains), which are
proposed as the products after the hydrothermal degradation of
HMT15. For Murchison and Murray, the presence of alkyl-
imidazoles was strongly expected in their extracts; while, they
were significantly depleted in Tagish Lake (Supplementary
Figs. 8–10). These results do not contradict the assumption that
Tagish Lake, at least the specimen used in the present study,
could have experienced less extensive hydrothermal alteration
than Murchison and Murray on their parent bodies.

Given the harsh extraction conditions of amino acid analyses,
one possibility is that some of the HMT and its derivatives can
form amino acids during routine amino acid extraction and
workup. In fact, acid hydrolysis of HMT-containing organic
mixtures yielded amino acids, and the role of HMT for amino
acid formation has been investigated well in recent studies19,27,28.
However, the argument that HMT is the origin of amino acids
during workup is weakened by Murray, which has a similar
abundance of amino acids to Murchison8, yet the HMT con-
centration was lower by about an order of magnitude than
Murchison. Moreover, sample heterogeneity between different
specimens of the same meteorite, which has been often invoked
for explaining different quantitative results of some molecules
including their different enantiomeric distributions in the same
meteorites4, can also be invoked. On the other hand, it is likely
that HMT is formed during our laboratory workup if both
ammonia and formaldehyde are present in the aqueous extract29.
Previous studies detected both molecules from carbonaceous
meteorites after hydrothermal treatment and/or acid hydrolysis of
meteorite powders at ~100 °C or above30–32, implying that both
free ammonia and formaldehyde are released from their acid-
labile precursors after these treatments. Although it is not clear
whether such precursors can contribute to the formation of HMT
in aqueous solutions without acid and high-temperature treat-
ment at room temperature, we expect that HMT formed as such

does not constitute a significant fraction in the detected HMT
abundance. Nevertheless, there are still a number of uncertainties
on the origin of the difference in HMT abundance between three
meteorites analysed in the present study (e.g. HMT abundance
when each parent body is formed by accretion).

It is reasonable that ISM-derived HMT would be highly D-
enriched19. Though the typical interstellar values (e.g., D/H ratio
≥0.01)33 are far higher than seen in any meteoritic compound. No
levels of this extreme deuteration of HMT were visible. Yet, it is
still possible that the HMT detected has an interstellar prove-
nance and the ISM D was lost to exchange with comparatively D-
poor parent body fluids. We have tested the D/H exchange in
HMT upon heating with water and silicates to simulate possible
variations in the deuteration level of meteoritic HMT through
hydrothermal processes in asteroids. When fully deuterated HMT
(C6D12N4) was heated with H2O under alkaline conditions (pH
= 10) at 100 °C, deuterium atoms in HMT were gradually
replaced with hydrogen atoms in H2O, resulting in the formation
of partly hydrogenated HMT like C6HD11N4 and C6H2D10N4
after several days (Supplementary Fig. 11). These results suggest
that even if HMT was enriched in deuterium upon the formation
in the ISM, it might get depleted in deuterium through interac-
tions with relatively deuterium-depleted water on the parent
bodies of CM meteorites34.

Once HMT is incorporated into planetary systems and into a
meteorite parent body, it has three likely fates: (1) physico-
chemical desorption from the surface of asteroids into the gas
phase of the solar system, (2) decomposition, and (3) preserva-
tion. It is likely that desorption of HMT from asteroids could be
induced either or both by external excitation energies (e.g., cos-
mic rays and ultraviolet photons) and by thermal processes,
although these processes have not been studied experimentally
so far. Laboratory studies strongly suggest that aqueous or ther-
mal degradation of HMT on meteorite parent bodies has a
potential to yield various kinds of molecules, such as for-
maldehyde (H2CO), NH3, amines, amino acids, and nitrogen
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heterocycles15,25,35–37, many of which have been identified in
carbonaceous meteorites after hydrothermal treatment at around
100 °C or acid hydrolysis30–32. HMT that survived these deso-
rption and degradation processes might be delivered to the Earth
via meteorites and possibly interplanetary dust particles.

Among the various kinds of molecules which can form via
hydrothermal degradation of HMT, both H2CO and NH3 are
considered particularly important for the formation of soluble
organic molecules, such as amino acids and sugars, and insoluble
organic matter in meteorites through various reactions such as
formose and Mannich reactions or Strecker-cyanohydrin
synthesis5,13,15,28,36–40. Although H2CO and NH3 are two sig-
nificant components in interstellar ices3, which are mainly
formed by the hydrogenation of CO and N atoms, respectively9,
due to their low desorption temperatures from interstellar grains
(<100 K)41,42, unless transformed into other (non-volatile) species
by chemical reactions, both molecules are likely to be lost from
grains during warming up phases toward star formation if the
temperature of the grains exceeds the desorption temperature of
both molecules. In contrast, since solid HMT does not desorb
from grains even at 330 K (refs. 15,18), it should have more
opportunity to be incorporated into inner solar system bodies.
Naturally, since HMT is in equilibrium with H2CO and NH3, it
could also have been formed on meteorite parent bodies from
both molecules if they are really present, which could keep the
HMT concentration relatively constant. However, H2CO and
NH3 have been identified in carbonaceous meteorites upon
hydrothermal treatment at around 100 °C or acid hydrolysis30–32;
conversely these species may be from the decomposition of HMT
on the parent body or during laboratory workup. As such, it will
be challenging to constrain the location of HMT formation but its
presence in the processed interstellar ice analogues16–20 can be a
good indicator to explain its presence in meteorites. Hence, the
presence of HMT in carbonaceous meteorites promises its pivotal
role to carry interstellar prebiotic precursors to the inner solar
system, which should contribute to the chemical evolution in the
primordial stage on Earth.

Methods
Meteorite samples. The Murchison meteorite (CM2) was from a 10 g chip taken
from a 47.5 g fragment originally from the Field Museum of Natural History,
Chicago that had been stored at room temperature in a sealed glass desiccator for
many years at the University of Chicago until it was opened in August 2015. The
10 g chip was crushed and homogenized at the NASA Goddard Space Flight Center
and a 2 g portion of the powder was sent to Tohoku University. The sample quality
(i.e. a degree of contamination) was previously evaluated for amino acids, sug-
gesting very low levels of amino acid contamination based on their heavy carbon
isotopic compositions and the detection of racemic alanine43,44. The Murray
(CM2) and the Tagish lake (C2 ungrouped) meteorites were both from meteorite
trading companies with the certification. The exterior surfaces of these meteorite
samples were independently washed by 0.1 M HCl solution (water was qTOF
grade, Fujifilm Wako Co. Ltd) with a soak (3 min at ambient temperature) and
gentle ultra-sonication (0.5 min, <38 kHz by double glass containers) to peel the
meteoritic surface layer, and the supernatant was removed. Then, the sample fol-
lowed an organic solvent soak (3 min at ambient temperature) by dichlor-
omethane/methanol (50:50, v/v) with gentle ultra-sonication (0.5 min, <38 kHz by
double glass container). After removing the supernatant, the chemically peeled
samples were dried up by a vacuum freeze dryer (EYELA Co., Ltd) at ambient
temperature. In a clean bench, the dried samples were gently powdered as fine as
using a clean pestle and a clean mortar according to the previous work5,45 with the
present blank test.

HMT extraction from meteorites and purifications prior to LC analysis. HMT
and other water-extractable hydrophilic molecules (e.g., sugars) were recovered
from ~2 g of the Murchison powder and the cation desalting fraction as described
in Furukawa et al.5 was used for this study. For further investigation of other
reference carbonaceous meteorites, we conducted the water and solvent extraction
for the fine powdered samples (2 g for Murray and 0.5 g of Tagish Lake) using
ultra-sonication (10 min with crushed ice in the sonic bath) with two bed-volume
of ultra-pure water (qTOF grade, Fujifilm Wako Co. Ltd). After the solid/liquid
separation by the centrifugation (10 min, 3000 rpm), the supernatant liquid phase

was recovered; the water-extractable fraction procedures were repeated for three
times. The fraction was then frozen and dried up by a vacuum freeze dryer (EYELA
Co., Ltd) under ambient temperature. To remove inorganic salts and interfering
organic matrix from the extracts, we isolated the HMT fraction using the cation
exchange chromatography (AG50W-X8 resin, Bio-Rad Laboratories)46. The final
elution containing HMTs was dried by a vacuum freeze dryer (EYELA Co., Ltd)
under ambient temperature. The final fraction was dissolved in ~1 mL of ultra-pure
H2O and filtered by 0.20 µm PTFE cartridge filter just before the HRMS. The
pretreatment eliminates HPLC/ESI-Orbitrap-MS potential artefacts including a
chromatographic retention shift27,47, ion suppression and ion-enhancement
effect48,49. The recovery of HMT was measured using its standard reagent to be
>90%. All glassware and the quartz wool were cleaned by heating in air at 450 °C
for 3 hr.

Identification of HMT by a HRMS coupled with a conventional HPLC. The
meteorite extract was introduced into an Orbitrap mass spectrometer (Q Exactive
Plus, Thermo Fischer Scientific) with a mass resolution of m/Δm= ~140,000 at a
mass-to-charge ratio (m/z) of 200 via an HPLC system (UltiMate 3000, Thermo
Fischer Scientific) equipped with a reversed-phase separation column (InertSustain
PFP, 2.1 × 250 mm, particle size of 3 μm, GL Science) at 40 °C. The eluent pro-
gramme for this HPLC setup is as follows: solvent A (H2O), solvent B (acetonitrile
+ 0.1% formic acid by volume)= 90:10 for the initial 5 min, followed by a linear
gradient of A:B= 50:50 at 20 min, and it was kept at this ratio for 25 min. The flow
rate was 100 μLmin–1.

The Murchison extract was also analysed using the same HPLC/HRMS
equipped with other separation columns: a Hypercarb separation column (2.1 ×
150 mm, particle size of 5 μm, Thermo Fischer Scientific)19 at 30 °C or an
InertSustain Amide column (3.0 × 250 mm, particle size of 3 µm, GL Science) at
40 °C in hydrophilic interaction (HILIC) chromatography mode to confirm that
the detection of HMT does not depend on analytical columns (Supplementary
Table 2). The eluent programme for Hypercarb is as follows: at t= 0, solvent A
(water), solvent B (acetonitrile+ 0.1% formic acid)= 100:0, followed by a linear
gradient of A:B= 80:20 at t= 20 min and it was kept at this ratio for 5 min. The
flow rate was 0.1 mLmin–1. The eluent programme for the HILIC mode analysis is
as follows: at t= 0, solvent A (10 mM ammonium formate plus 0.1% formic acid),
solvent B (acetonitrile)= 1:99, followed by a linear gradient of A:B= 40:60 at t=
40 min and it was kept at this ratio for 5 min. The flow rate was 0.3 mLmin–1.

The mass spectra were recorded in the positive ESI mode with a m/z range of
50–400 and a spray voltage of 3.5 kV. The capillary temperature of the ion transfer
was 300 °C. The injected samples were vaporized at 300 °C. We set up an inverse
gradient programme to maintain the ionization efficiency during the ESI. To
minimize analytical noise and the background signals in the LC and Orbitrap, we
used high purity grade water and acetonitrile (LC/MS grade from Wako Chemical,
Ltd.). Under these experimental conditions, the mass precision is always better
than 3 ppm for each chromatogram (e.g., 141.1135 ± 0.0004 for protonated HMT).

The MS/MS experiment was also performed using a hybrid quadrupole-
Orbitrap mass spectrometer (Q-Exactive Plus, Thermo Fischer Scientific) with the
identical HPLC and ionization conditions used for the full-scan analysis. The
extracted positive ions m/z 141.11 ± 0.2 were reacted with high-energy (30 in
arbitrary unit) collision N2 gas to produce fragmental ions, in which the mass range
of m/z 50–160 was monitored using an Orbitrap MS with a mass resolution of
~140,000. The collisions of high-energy N2 with the protonated HMT ion (m/z
141.1135) gave two major fragmental ions; C5H10N3

+ (m/z 112.0869) and
C4H9N2

+ (m/z 85.0761), as well as its non-fragmented parent ion (m/z 141.1135,
Fig. 3a). The chromatographic peak of the Murchison extract gave the same
fragmental ions except for m/z 123.0553 and 68.9352 (Fig. 3b). These mass peaks
can be assigned to other species or fragments, which are not related to HMT,
coexisting in the Murchison extract. The mass peak assigned to C7H11 (m/z=
95.0856) is a background signal on the LC condition. For the Tagish Lake and
Murray meteorites, we were unable to perform MS/MS measurements due to the
low concentration of HMT in the extracts.

Blank test. The solvent extraction blank analysis with ultra-sonication procedure
was performed using 2 g of combusted quartz sand45 through the same extraction
process to verify the potential impurity in the meteorite extracts. The mass chro-
matogram was shown in Supplementary Fig. 2a. We confirmed that no HMT was
identified in this process. In order to evaluate potential terrestrial HMT con-
tamination of the Murchison meteorite from the fall site, the entire wet and dry
chemical processes, i.e., the solvent extraction, freeze-drying, desaltation, filtering
the final fraction, and conditioning of LC-Orbitrap MS, was also applied to the soil
sample (102 mg) collected with a clean metal scoop from a depth of 20–30 cm from
the Murchison meteorite strewn field in 1999 (please see the supplementary
information in the ref. 5). The mass chromatogram was shown in the Supple-
mentary Fig. 2b. Very tiny amount of HMT was detected in the soil extract with the
HMT concentration of 2 ppb, which was <0.5% of the indigenous HMT con-
centration in the Murchison meteorite extract.

Deuterium–hydrogen substitution on the hydrothermal treatment of deuter-
ated HMT. Stock aqueous solution of fully deuterated HMT (C6D12N4, CDN
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Isotopes; HMT-d12) was prepared to be 172 mM and pH 10. About 100 µL of the
stock solution was transferred to a sample tube (~3 cm in length, 6 mm in dia-
meter) made with pure Au whose one side had been tightly crimped by hand pliers.
About 5 mg of amorphous forsterite (~100 nm in diameter) was also enclosed in
the same sample tube as an analogue of asteroid minerals. After the headspace of
the tube was purged with dry N2 gas, the other side was also crimped, and the
sample tube was heated at 100 °C for up to 31 days using an autoclave (MMS-50,
OM Labotec, Japan). We confirmed the weight of the sample tube did not change
after heating, which indicated effectively no sample loss from the tube. The heated
HMT solution was extracted from the sample tube, filtered by a hydrophilic PTFE
membrane filter (Millex®-LH 0.45 μm, Merck Millipore) to remove the silicate
powders, and analysed by HRMS using a Thermo Scientific Exactive by flow
injection. Analytical details have been reported in Oba et al. 50.

Data availability
The data that support the findings of this study are available from the corresponding
author (Y.O.) upon reasonable request.
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Supplementary Figure 1. Structure of hexamethylenetetramine. The symmetric 

chemical structure of hexamethylenetetramine and the equivalent electrostatic potential 

in the ground state condition. 

 
 
 
  



 

 

 

 

 

 

 

 

Supplementary Figure 2. Blank analyses. Mass chromatograms at the m/z of 

141.1135 for (a) the procedural blank and (b) the Murchison soil extract at the 3-ppm 

window of the monoisotopic mass of the hexamethylenetetramine (HMT)-protonated 

ion. In panel (a), no HMT peak above the noise level exists, while in panel (b), HMT 

was positively identified at ~20.8 min. The HMT concentration in the Murchison soil 

was 2 ppb, which was ~0.2% of the Murchison meteorite extract (please see, Table 1). 
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Supplementary Figure 3. Detection of hexamethylenetetramine isotopologues. Mass 

chromatograms extracted at the m/z of (a) 141.1135, (b) 142.1105, (c) 142.1168, and (d) 

142.1197, which correspond to the protonated ions of hexamethylenetetramine (HMT), 

15N-HMT, 13C-HMT, and D (2H)-HMT, respectively (3-ppm window at each 

monoisotopic mass) in the Murchison meteorite extract. The numbers on the upper right 

in each panel represent the absolute scale for each chromatogram.  
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Supplementary Figure 4. Method validation. Relative abundances of deuterated 

hexamethylenetetramine (HMT) isotopologues (dn-HMT, where n is the number of D 

atoms in an HMT isotopologue) before and after the extraction and purification 

procedures. The deuterated HMT isotopologues were prepared by the photolysis of ice 

mixtures containing a series of deuterated methanol isotopologues (Supplementary ref. 

1). The sample was analysed at first without purification (concentration: X-axis). After 

that, the same sample was dried and processed in the same manner except the addition 

of the purification procedure (concentration: Y-axis). The dashed red line represents a 

1:1 correlation.  
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Supplementary Figure 5. Evaluation of artifact for the formation of 

hexamethylenetetramine derivatives. Mass chromatograms at the m/z of (a) 141.1135, 

(b) 155.1291, (c) 156.1244, (d) 157.1084, and (e) 171.1240, which correspond to 

hexamethylenetetramine (HMT), HMT-CH3, HMT-NH2, HMT-OH, and HMT-CH2OH, 

respectively, for the HMT standard reagent (3-ppm window at each monoisotopic mass). 

The relative scales for each y-axis were adjusted the same as those applied in Figure 4. 

HMT derivatives were not identified on the mass chromatograms, indicating that the 

HMT-derivatives detected in the Murchison extract are not artifacts but are indigenous 

to the meteorite. 
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Supplementary Figure 6. Relative abundances of hexamethylenetetramine 

derivatives. Comparison of the relative abundance of HMT-derivatives (HMT-CH3, 

HMT-OH and HMT-CH2OH) in organic residues produced in laboratories (blue bar) 

(Supplementary ref. 2) and that in Murchison (red circle). 
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Supplementary Figure 7. Comparison with another molecule in meteorites. 

Variations in the relative abundance of hexamethylenetetramine with glycine 

([HMT]/[Gly]) in each meteorite. The concentration of glycine was taken after 

Supplementary refs. 3-14. The error bars represent the standard deviation from the mean 

value of [HMT]/[Gly] for each meteorite. The values of [Gly] were derived from 

Supplementary refs. 3-11 for Murchison, Supplementary refs. 11 and 12 for Murray, and 

Supplementary refs. 13-15 for Tagish Lake. 
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Supplementary Figure 8. Alkyl imidazoles in Murchison. Mass chromatograms at the 

m/z values corresponding to the protonated ions of alkylated imidazole series (CnH2n-2N2 

+ H+, n = 3 to 10) in the Murchison extract (3-ppm window at each monoisotopic mass). 

The values in parentheses are the theoretical masses of the alkylated imidazoles. The 

uppermost panel corresponds to the protonated ion of imidazole (C3H4N2 + H+). The 

values on the right side represent each absolute intensity. 
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Supplementary Figure 9. Alkyl imidzoles in Tagish Lake. Mass chromatograms at 

the m/z values corresponding to the protonated ions of alkylated imidazole series 

(CnH2n-2N2 + H+, n = 3 to 10) in the Tagish Lake extract (3-ppm window at each 

monoisotopic mass). The values in parentheses are the theoretical masses of the 

alkylated imidazoles. The uppermost panel corresponds to the protonated ion of 

imidazole (C3H4N2 + H+). The values on the right side represent each absolute intensity. 
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Supplementary Figure 10. Alkylimidazoles in Murray. Mass chromatograms at the 

m/z values corresponding to the protonated ions of alkylated imidazole series (CnH2n-2N2 

+ H+, n = 3 to 10) in the Murray extract (3-ppm window at each monoisotopic mass). 

The values in parentheses are the theoretical masses of the alkylated imidazoles. The 

uppermost panel corresponds to the protonated ion of imidazole (C3H4N2 + H+). The 

values on the right side represent each absolute intensity. 

 

 

  

3.82 x 106

C3H4N2+H+ (m/z=69.0447)

C4H6N2+H+ (m/z=83.0604)

C5H8N2+H+ (m/z=97.0760)

C6H10N2+H+ (m/z=111.0917)

C7H12N2+H+ (m/z=125.1073)

C8H14N2+H+ (m/z=139.1230)

C9H16N2+H+ (m/z=153.1386)

C10H18N2+H+ (m/z=167.1543)

2.60 x 107

9.25 x 106

2.38 x 107

3.78 x 107

4.31 x 107

3.16 x 107

1.65 x 107

0 5 10 15 20 25 30 35 40 45
Time (min)

0

100
0

100
0

100
0

100
0

100

R
el

at
iv

e
Ab

un
da

nc
e 0

100
0

100
0

100
N

HN



 

Supplementary Figure 11. Hydrogen isotopic exchange during heating with water. 

Variations in the mass spectra of deuterated hexamethylenetetramine (HMT-dn) after 

heating with water (pH = 10) and amorphous silicates (Mg2SiO4) at 100 °C. A 

description “dn” (n = 4–12) represents deuterated HMTs whose number of D atoms is n 

in HMT.  
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HMT
standard

Sample
(Murchison)

Theoretical Mass
[M+H]+

Measured Mass
[M+H]+

InertSustain PFP 20.39 20.35 0.04 141.1135 141.1133 0.0002

Hypercarb 3.79 3.78 0.01 141.1135 141.1135 0.0000

InertSustain Amide 24.86 24.78 0.08 141.1135 141.1134 0.0001

Supplementary Table 1. Summary of the retention time and the measured mass of HMT in Murchison and the standard reagent
under different analytical conditions.

The ∆t  (min) value was defined as the difference in retention time (min) between the authentic HMT standard and the meteorite
sample (e.g. Murchison）.

∆ m/z

Retention time (min)

Separation column ∆t (min)

Mass accuracy with proton

InertSustain PFP Silica-based
pentafluorophenyl

Reversed phase 2.1 × 250 mm, particle size of 3 μm GL Science

Hypercarb Graphite-based
porous carbon

Reversed phase 2.1 × 150 mm, particle size of 5 μm Thermo Fischer Scientific

InertSustain Amide Silica-based
carbamoyl

Normal phase 3.0 × 250 mm, particle size of 3 μm GL Science

Specification Supplier

Supplementary Table 2. Summary of the separation columns used in the present study.

Separation column Stationary phase Separation mode



Supplementary Note 1 

 In addition to the examples of researches on the formation of organic molecules 

in asteroids as shown in the Introduction section, a number of related studies have been 

reported so far: the formation of IOM-like organic solids (Supplementary refs. 16–18) 

and sugars (Supplementary ref. 19) through polymerization of formaldehyde, the 

formation of amino acids (Supplementary ref. 20), alkylpyridines (Supplementary ref. 

21), unidentified complex mixtures (CxHyOzNw) from aldehydes and ammonia 

(Supplementary ref. 22) under hydrothermal conditions, and the formation of 

nucleosides and their components from formamide with the assist of energetic protons 

(170 MeV) (Supplementary ref. 23). In addition, the formation of various kinds of 

organic molecules through the decomposition of HMT has been confirmed 

experimentally (Supplementary refs. 24, 25). 
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